Laser strike
Pointing out the hazards
DASM AL7 introduces a new training framework to replace the CRM and MHF programs

Key changes include:

A change in terminology from Crew Resource Management (CRM) or Maintenance Human Factors (MHF) to NON-TECHNICAL SKILLS (NTS).

The term NTS denotes targeted human-factors training designed to promote reliable and effective performance. It promotes the integration of technical and non-technical training and assessment and recognises that not all Defence aviation personnel work in crew-based environments.

Aviation NTS Trainer Course replaces SFAC and prepares participants to deliver NTS Foundation and Continuation and awareness training.

Aviation NTS Foundation Course replaces CRM and MHF Foundation courses and will be integrated into all initial employment training for aviation-related trades.

Aviation Continuation Training replaces refresher training sessions and consists of targeted scenario-based NTS training packages developed by DDAAFS. It must be conducted every two years for all aircrew, JBAC, ABM, UAS pilots and operators, engineers and maintenance personnel.

The new framework supports a move beyond classroom-based NTS training to the conduct of skills-based training integrated into the broader training system. There are several evidence-based techniques for assessing performance; DDAAFS recommends using the Method for Assessing Personnel Performance (MAPP) contained in the DASM.

For more information on NTS visit the DDAAFS intranet homepage.

Aviation non-technical skills courses

NTS

DASM AL7 introduces a new training framework to replace the CRM and MHF programs

Key changes include:

A change in terminology from Crew Resource Management (CRM) or Maintenance Human Factors (MHF) to NON-TECHNICAL SKILLS (NTS).

The term NTS denotes targeted human-factors training designed to promote reliable and effective performance. It promotes the integration of technical and non-technical training and assessment and recognises that not all Defence aviation personnel work in crew-based environments.

Aviation NTS Trainer Course replaces SFAC and prepares participants to deliver NTS Foundation and Continuation and awareness training.

Aviation NTS Foundation Course replaces CRM and MHF Foundation courses and will be integrated into all initial employment training for aviation-related trades.

Aviation Continuation Training replaces refresher training sessions and consists of targeted scenario-based NTS training packages developed by DDAAFS. It must be conducted every two years for all aircrew, JBAC, ABM, UAS pilots and operators, engineers and maintenance personnel.

The new framework supports a move beyond classroom-based NTS training to the conduct of skills-based training integrated into the broader training system. There are several evidence-based techniques for assessing performance; DDAAFS recommends using the Method for Assessing Personnel Performance (MAPP) contained in the DASM.

For more information on NTS visit the DDAAFS intranet homepage.
Laser strikes represent an emerging burden on the aviation community. The increase in attacks may be attributable to a rise in copycat offenders spurred by media coverage of attacks, coupled with the increased affordability and availability of devices.

Offenders may also be motivated by a perception of anonymity; however, authorities are using more and more resources to catch offenders and courts are handing out severe penalties such as fines in excess of $10,000 in an attempt to deter future offenders.

Laser strikes, also known as laser dazzling or lasing, refers to the use of hand-held laser devices (laser pens) on passing aircraft. During night-time flights, a pilot’s eyes adapt for mesopic (low light) vision to help identify objects outside of the aircraft such as terrain and aerodrome facilities, as well as to read flight charts or instrument displays in the aircraft. However, this adaptation to low light leaves pilots vulnerable to light-based optical hazards.

Pilots are particularly vulnerable during takeoff and landing, as these phases of flight are more cognitively demanding and place the pilot in closer proximity to the laser’s origin, increasing its intensity.

Laser strikes have been known to impair a pilot to the extent that a co-pilot has to take over the remainder of the flight, as well as resulting in unscheduled landings leading to considerable disruption to aviation operations. Laser strikes can cause substantial discomfort, and can impair operations through creating glare, flashblindness or a persisting afterimage.

A single laser strike could leave a pilot impaired anywhere from 30 seconds to several minutes or, as in some cases, where a pilot has adapted to complete darkness impairment, it can be up to half an hour (Nakagawara, Montgomery, Dillard, McLin & Connar, 2004).

Although a laser strike by a combatant is not unheard of (there was one reported incident in Afghanistan in 2013 on an ADF aircraft), incidents are predominantly caused by members of the public. Laser strikes as a form of social deviancy gained prominence in 2004 to 2005 because of the rise of inexpensive, commercially available laser pointers and it has been speculated that media coverage of incidents may have spurred copycat offenders (Murphy, 2009). It is plausible that offenders may be motivated by the degree of perceived anonymity in the offence — where it can be difficult for aircrew to identify the source of the attack.

Global prevalence of laser strikes

Fortunately there has yet to be a reported crash caused by a laser strike; however, this may change as the prevalence of occurrences has increased. Occurrence rates appear to reflect exponential growth since 2004/2005, with the number of reported incidents to the US Federal Aviation Administration (FAA) increased an alarming 176-fold from 2004 when there was 46 occurrences to 2015, which had 7703 occurrences. During 2010 to 2014, incidents of laser strikes were reportedly the second most common (13 per cent) source of pilot incapacity occurrences in high-capacity transport operations according to the Australian Transport Safety Bureau (ATSB) (ATS, 2015).
Laser strikes on aviation agencies by region

Figure 1 shows reported yearly laser strikes per capita for aviation safety regulators by region. A sharp decline in reports to the ATSB is observed between 2008 and 2009 following the introduction of legislation restricting the power of handheld devices to 1 milliwatt in Australia. Despite changes to legislation, the number of incidents rapidly increases in subsequent years, conforming to a general trend of exponential growth observed across other agencies.

This increase in reported laser strikes may be explained by the availability of illegal devices. A 2016 study by RMIT found that in a sample of eight laser pens (four green, four red) purchased either in Australian electronic stores or online, each green laser pen device was 4,320 to 21,717 times the legal wattage.

Similarly, an earlier study on handheld laser wattage, Wheatly (2013) found that a sample of 43 devices (a mixture of red, green and violet) advertised as compliant, 95 per cent exceeded the legal wattage. Wheatly also found that 51-217 times the legal wattage.

If you experience a laser strike it is important that the incident is reported to air traffic control in the first instance. This allows for air traffic control to inform any aircraft in, or scheduled to be in, the vicinity of the strike to be notified. It is also important that an Aviation Safety Occurrence Report (ASOR) is submitted so that Defence is aware of the prevalence of laser strikes and their locations, and that the Australian Transport Safety Bureau (ATSBI) can be notified.

What can you do?

If you experience a laser strike during flight, the following is recommended:

- Avoid or shield eyes from the source of the laser.
- Increase lighting in the cockpit. This will make your pupils contract (smaller) decreasing the chance of the laser making contact with them.
- Consider adjusting the flight path so the laser cannot get a clear line of sight with the cabin, such as turning, using the fuselage to block the laser or increasing altitude.
- If the pilot is exposed, consider allowing the co-pilot to take control of the aircraft if available or engaging autopilot.

What is important to remember is that if you are exposed to a laser strike it is highly unlikely that any permanent damage will occur due to the distance between yourself and the device on the ground. However, upon landing if you are experiencing irritation, photophobia to light, disturbance of vision or black spots it is advised that you consult a medical officer.

The UK CAA offers a self-assessment tool which can help inform individuals whether they may need to seek medical consultation (see p. 8).

Figure 1. International laser strike incidents by aviation agency region

Laser strikes on Defence aircraft

Figure 2 shows a comparison of laser strikes reported to the ATSB and to Defence between 2008 and 2015. The figure shows that laser strikes, expressed as occurrences per 100,000 movements, are less likely to occur on Defence aircraft than on civil aircraft. In general, it is typically less common for Defence avionics flight paths to be adjacent or across heavily populated civilian areas than civilian aircraft.

Similarly, Defence have a large proportion of remote aerodromes, whereas targeted attacks are more likely to occur near civilian aerodromes in major cities. Despite attacks being less likely to occur on Defence aircraft, the number of attacks has still increased nearly two-fold for Defence aircraft between 2010 and 2015, and has increased more than four-fold for civil aircraft.

The majority of Defence flights occur over Australian territory, and subsequently the majority of laser attacks on Defence aircraft have occurred in Australia (84 per cent, 2011-2016). Figure 3 shows the location of laser strikes on Defence aircraft.

Alarmingly, strikes reported in or around Darwin represented more than half (54 per cent) of occurrences in Australia, followed by Williamtown (10 per cent) and Pearce (7 per cent). Defence aircrews, particularly pilots, should be especially aware in these regions when flying at night.

What can you do?

Despite stringent legislation introduced in 2008, a resurgence of laser-strike occurrences is evident in Australia as well as abroad. Defence aviation personnel should remain vigilant, especially when flying near populated areas, and ensure they are familiar with Defence protocol for handling a laser strike.

If you experience a laser strike it is important that the incident is reported to air traffic control in the first instance. This allows for air traffic control to inform any aircraft in, or scheduled to be in, the vicinity of the strike to be notified. It is also important that an Aviation Safety Occurrence Report (ASOR) is submitted so that Defences are aware of the prevalence of laser strikes and their locations, and that the Australian Transport Safety Bureau (ATSBI) can be notified.

What can you do?

If you experience a laser strike during flight, the following is recommended:

- Avoid or shield eyes from the source of the laser.
- Increase lighting in the cockpit. This will make your pupils contract (smaller) decreasing the chance of the laser making contact with them.
- Consider adjusting the flight path so the laser cannot get a clear line of sight with the cabin, such as turning, using the fuselage to block the laser or increasing altitude.
- If the pilot is exposed, consider allowing the co-pilot to take control of the aircraft if available or engaging autopilot.

What is important to remember is that if you are exposed to a laser strike it is highly unlikely that any permanent damage will occur due to the distance between yourself and the device on the ground. However, upon landing if you are experiencing irritation, photophobia to light, disturbance of vision or black spots it is advised that you consult a medical officer.

The UK CAA offers a self-assessment tool which can help inform individuals whether they may need to seek medical consultation (see p. 8).

References

Whitaker, T. A. (2004). Laser pointer prohibition improving safety or shining misclassification - the proper pentagon article 900-404A.
Aviation Laser Exposure

Self-Assessment (ALESAs)

This self-assessment is designed to aid pilots, air traffic controllers, or flight crew members who have been exposed to a laser beam in making a decision on whether or not to see an eye specialist.

The eye specialist may be either an optometrist or ophthalmologist. It is extremely unlikely that a laser-beam exposure will result in permanent eye damage. Eye discomfort and irritation during the exposure is common and rubbing your eye can result in an abrasion that may be painful.

If you have experienced one or more of the following after a laser-beam exposure please consult an eye specialist:

- **Eye problems** — swelling, pain, itch, watering, discharge, dryness or redness of the eye.
- **Visual disturbance** — blurring, black spots, trouble reading, loss of peripheral vision, floaters, halos, poor night vision, sensitivity to light.

These symptoms may not appear until hours after the incident and may not be related directly to laser exposure but could reflect other eye issues perhaps not previously noticed.

While viewing the grid from 30cm in front of your eyes, please test one eye at a time to answer the following questions:

1. **Flash blindness**
 A visual impairment during and after exposure to a very bright light. It may last for seconds or minutes.

2. **Glimmer**
 Difficulty seeing in the presence of a bright light.

3. **Distraction**
 A light bright enough to disrupt attention.

Was there any indication that the laser was high power and capable of causing eye damage?
(For example, if the power of the laser was later identified and found to be high power.) In nearly all cases the answer will be "No".

Was there glare (difficulty seeing in the presence of a bright light)?

Did you experience flash blindness (visual impairment during and after exposure to a very bright light that may last for seconds or minutes)?

Was the laser beam green?

Did you look away/blink immediately?

Did you continue to see a bright glow even after the laser-beam exposure ended?

Was there any indication that the laser was high power and capable of causing eye damage?
(For example, if the power of the laser was later identified and found to be high power.) In nearly all cases the answer will be "No".

Was there glare (difficulty seeing in the presence of a bright light)?

Notes:

1. Permanent eye damage is not known, or is extremely unlikely, to occur in this situation.
2. There is a possibility of eye damage and it is suggested that you contact an eye specialist for further evaluation although this does not need to be undertaken urgently in the absence of symptoms.
3. Please note the symptoms listed on the previous page. These may not appear until hours after exposure and may not be related directly to laser exposure but could reflect other eye issues perhaps not previously noticed. If they do occur then please consult an eye specialist such as an optometrist or ophthalmologist.

This ALESA tool has been published with permission from the UK Civil Aviation Authority.

For further information, the British Airline Pilots Association (BALPA) has produced an advisory information sheet which will be available on their website www.balpa.org.
Laser illumination of an aircraft in flight can pose a significant hazard to flight safety. Aircrew exposed to lasers in flight can experience degraded night vision and flash blindness from the bright light, the lasers can obscure the visual field by producing glare across the canopy or window, and attempts to illuminate the aircraft with a laser can be distracting.

Despite these significant threats to flight safety, it is very unlikely for aircrew to experience permanent damage to their vision or injury to their eyes after an in-flight laser event.

Laser eye damage results from the total dose of the laser energy that strikes the eye; damage to vision is determined by the total dose that enters the pupil. When considering the risk of eye injury, the total dose of laser energy is determined by the power of the laser, the distance between the laser and the aircraft, the distance between the laser and the eye, and the total time spent looking at the laser.

There are many factors that contribute to the risk of eye injury and permanent vision damage being so uncommon in aviation. These include:

- The power of a laser reduces over distance, and the beam size widens over distance.
- The distance between the laser and the aircraft, both horizontal separation and altitude, commonly exceeds the hazard distance for hand-held laser pointers. This means that the laser is aligning their eyes with the laser, focusing the beam into their eyes, and increasing the amount of laser energy entering the eye.

The Nominal Ocular Hazard Distance (NOHD) describes the maximum distance that a laser has the potential to cause serious eye injury. Most hand-held laser pointers in the community have a power <5 mW, and do not have sufficient power to cause eye injury more than 16 m away (in a person who blinks normally), or up to 25 m in a person who stares at the laser for more than 10 s without blinking. Even a 500 mW laser pointer only has enough power to cause eye injury up to 160 m (or up to 250 m if you stare at the laser for more than 10 seconds). Even the most powerful hand-held laser pointer available — the 1000 mW ‘Wicked’ laser with a blue beam — only has power to cause eye injury up to 225 m (or 360 m if you stare at the laser for more than 10 seconds).

For aircrew lased by a common hand-held laser pointer, the distance between the laser and the aircraft is usually much greater than the maximum distance that the laser can cause injury to the eyes. However, the risk of eye injury increases substantially in people who stare at a laser.

The brightness of a laser is related to its colour and the sensitivity of the retina, not its power. Green lasers appear much brighter than a red laser or a blue laser of the same power. The power of eye injury is not related to how bright a laser appears, but the power of the laser, the distance between the laser and the eye, and the total time of exposure. Even though a green hand-held laser pointer may appear bright to aircrew flying at night, it is unlikely to have enough power to cause eye injury unless they stare at it. The risk of eye injury is greater from a blue laser than a green laser, not because of the colour but because the power of the blue ‘Wicked’ laser is greater than common hand-held laser pointers, which are green.

Night vision goggles (NVG)

Night vision goggles provide protection from direct laser illumination; however, they provide no protection against lasers that can be seen outside the edge of the NVG field of view. In addition, some lasers can cause NVGs to bloom or shut down. Aircrew wearing NVGs should be cautious about relying on the NVGs to protect them from laser eye damage.

What should you do if you have been lased?

From a medical point of view, aircrew who have been lased in flight — especially those who noticed a bright flash as the laser temporarily hit their eyes — should look away from the laser and shield their eyes if possible. It is very important not to look for the laser source, and not to stare at it. Staring at a laser increases the risk of eye injury substantially. It would be helpful to increase the cockpit lighting, but this may not be desirable in an operational setting.

Transient degradation in night vision is common whenever a person is exposed to a bright light at night, including a laser. Exposure to a bright light at night may be accompanied briefly (5 s) by ghosting or after-images of the light source. This is normal, and does not indicate damage to the eyes or loss of vision. However, if night vision has been degraded by the laser, the affected pilot should consider handing control to an unaffected pilot, or engage autopilot if practical, until their night vision returns to an acceptable level.

If the eyes feel sore or uncomfortable, or if they are very sensitive to light, avoid rubbing them. Rubbing the eyes will make the irritation worse, and could aggravate a superficial laser eye injury. If visual symptoms persist beyond a few seconds (5 to 10 s), vision may have been compromised by the laser exposure. Aircrew concerned that...
their vision may have been affected by a laser strike should evaluate their vision using whatever visual material is available.

A flight manual, checklist, or map would be ideal, but even looking at the instrument panel would serve the purpose. In good illumination, look at the flight manual or checklist — you should be able to see it clearly. The writing should be clear and even; lines should be straight, and the visual field should be distortion-free; you should not see black spots or areas of darkness. If your visual field is uneven, distorted, or if you can see dark areas or black spots, your vision may have been affected. If you can see clearly and read easily, and your visual field is even, has no distortion, and is free of black spots, you can be comforted that your vision has not been affected.

The RAAF Institute of Aviation Medicine (RAAF IAM) is developing a 10 x 10 cm card with a grid on one side and text on the other to assist aircrew when available.

When should you see an AVMO?
Aircrew who have been lased in flight should seek urgent medical advice if they experience eye pain or irritation, or if they are concerned that their vision has been affected. Aircrew who have been lased do not need to seek urgent medical advice if they have no eye symptoms and their vision is unaffected.

This advice relates to the incidental lasing of aircrew in flight, where the laser is presumed to be a common low-power hand-held laser pointer.

Aircrew who have been lased by blue laser, a military-grade laser, or where aircrew may be operating in a tactical environment where there is a known or suspected threat from high-powered or military lasers, may be at higher risk of eye injury.

Where there is use of anti-personnel lasers comprising UV or infra-red energy (with or without visible wavelengths), the risk of eye injury is even greater. However, the advice remains the same — aircrew who suspect they have been lased should seek urgent medical assessment if they develop eye pain or irritation, sensitivity to light, or vision distortion.

If the laser beam was blue, or if there is evidence to suggest that the laser may have been a high-powered laser or a military-grade laser, IAM recommends that aircrew who have been lased see an AVMO, although in the absence of any eye discomfort or vision impairment, this does not need to be arranged urgently and can be safely conducted the following day.

However, as stated before, aircrew who have been lased in flight should seek urgent medical advice if they experience eye pain or irritation, or if they are concerned that their vision has been affected.
A US study of flightpath-management anomalies updates recommended solutions.

Automation vulnerabilities

By Wayne Rosenkrans

Although difficult, flight-path-management tasks are handled routinely by professional pilots operating highly automated aircraft. The most demanding situations still tend to significantly increase the pilots’ task complexity and workload, according to a US working group of subject matter experts.

For example, in cases in which air traffic control (ATC) suddenly issued an amended clearance/vector changing the preplanned flight path—say, for temporary deviation from a complex instrument flight procedure—some pilots told the working group they struggled, at times, to recover the optimum flight path by relying solely on modes of the automated systems. Moreover, complete or partial reversion to manual flight operations to resolve brief confusion could be problematic, the working group’s analyses showed.

Actual and potential safety consequences of this and related problems and new recommendations for integrated solutions, form the core of the final report on operational use of flight-path management systems, issued in late 2013 by the Flight Deck Automation Working Group.

Kathy Abbott, chief scientific and technical adviser for flight deck human factors at the US Federal Aviation Administration (FAA) and a co-chair of the 34-member working group, said the airline industry’s “impressive safety record” partly can be attributed to flight crews intervening, as expected, to mitigate flight-path-related risks during flights, underscoring the reason for addressing persistent problems in flight-path management.

This initiative also dovetails with government-industry efforts in airplane upset prevention, recognition and recovery, the report says.

“Incident and accident reports suggest that flight crews continue to have problems interfacing with these systems and have difficulty using these flight path management systems,” Dr. Abbott says. “We found vulnerabilities in automation, mode and energy-state awareness, manual handling, and managing system malfunctions or failures. These included failures anticipated by designers (failures) for which there were no flight crew procedures, and (failures) in flight management system (FMS) programming.”

At a December 2013 investigative hearing of the US National Transportation Safety Board (NTSB), Dr. Abbott and working group co-chair—David McKenney, a United Airlines captain representing the International Federation of Air Line Pilots’ Associations—folded questions about the relevance of the new report to an accident five months earlier.

Asked about the integration of philosophies and policies of human-centered design into flight deck automation during the past 15 years, Dr. Abbott told the hearing that “one of the important gaps that…sometimes does happen is a difference between the philosophy and the design, and the way that the systems are actually operated.”

Capt. McKenney testified: “Manual flight operations is not just the stick-and-rudder skills that everybody thinks it is. The term means [the psychomotor skills,] the cognitive skills, the airmanship, how we fly the aircraft (and) how we use these automated systems to actually maintain the flight path.”

“What we are recommending is that we create an operational policy for flight-path management that highlights that the responsibility of flight-path management rests with the pilot and that the automated systems are only one of the tools,” he says.

“Pilots (are trained) to rely on the systems all the time but they are not taught to question the systems. They expect the system to work when they use it and when it doesn’t, then they get caught short.”

In addition to presenting and cross-referencing exhaustive analyses of accident/incident data, line operations safety audit (LOSA) data, de-identified voluntary reports from frontline personnel and structured interviews with industry specialists, the report integrates some exclusively obtained, confidential material from individuals and organizations.

Basic findings

The following excerpts selected from 22 of the report’s 29 findings reflect the scope of inquiry: (seven findings about research methodology and data limitations have been omitted).

The excerpted findings, grouped by related subjects, include:

• Pilots mitigate safety and operational errors involving flight-path management systems, issued in late 2013 by the Flight Deck Automation Working Group.

• Vulnerabilities were identified in pilot awareness, manual handling, and errors in flight deck operations.

• Pilots mitigate safety and operational errors involving flight-path management systems, issued in late 2013 by the Flight Deck Automation Working Group.

• Increasingly, operators use a documented automation policy.

• Vulnerabilities were identified in pilot awareness, manual handling, and errors in flight deck operations.

• Pilots mitigate safety and operational errors involving flight-path management systems, issued in late 2013 by the Flight Deck Automation Working Group.

Fielding questions about the relevance of the new report to an accident five months earlier.

• Pilots mitigate safety and operational errors involving flight-path management systems, issued in late 2013 by the Flight Deck Automation Working Group.

• Pilots mitigate safety and operational errors involving flight-path management systems, issued in late 2013 by the Flight Deck Automation Working Group.

• Pilots mitigate safety and operational errors involving flight-path management systems, issued in late 2013 by the Flight Deck Automation Working Group.

• Pilots mitigate safety and operational errors involving flight-path management systems, issued in late 2013 by the Flight Deck Automation Working Group.

• Pilots mitigate safety and operational errors involving flight-path management systems, issued in late 2013 by the Flight Deck Automation Working Group.

• Pilots mitigate safety and operational errors involving flight-path management systems, issued in late 2013 by the Flight Deck Automation Working Group.

• Pilots mitigate safety and operational errors involving flight-path management systems, issued in late 2013 by the Flight Deck Automation Working Group.

• Pilots mitigate safety and operational errors involving flight-path management systems, issued in late 2013 by the Flight Deck Automation Working Group.
Data-entry errors, together with cross-verification errors, may cause significant flight-path deviation, leading to incidents or accidents. Pilot-to-pilot communication and co-ordination have improved and been more formalized, however, communication and co-ordination vulnerabilities still contribute to accidents or incidents.

Flight deck task/workload management continues to be an important factor affecting flight-path management. Pilots sometimes lack sufficient or in-depth knowledge and skills to most efficiently and effectively accomplish assigned flight-path management–related tasks.

Current training methods, training devices, the time allotted for training, and content may not provide the flight crews with the knowledge, skills and judgment to successfully manage flight-path management systems. Flight-instructor training, experience, and line operation familiarity may not be sufficient to effectively train flight crews for successful flight-path management.

Air traffic service personnel often do not have sufficient knowledge of how airspace procedure design and clearances affect flight-deck operations and often lack knowledge of aircraft capabilities. Communication and co-ordination between pilots and air traffic services (have) vulnerabilities that can affect flight-path management.

Other findings point to significant variations in flight-deck equipment design, potential differences in flight paths that should be identical within a given airspace, inconsistent application of human-factors expertise, government-industry discrepancies in using the term human-factors specialist, improved US regulatory expertise in human-performance evaluation but constrained resources to meet current demands; excessively lengthy government processes for aircraft certification; and operational approvals for new technologies and supporting policy/procedure approvals; and insufficient regulatory consideration of automation integration and flight-crew effects.

Recommendations

The following excerpts selected from 16 of 16 recommendations reflect the scope of inquiry, the four that were omitted concern ways to improve the regulatory process to expedite aircraft/equipment certification; encourage consistency in new pilot-automation interfaces, improve data collection/analysis to advance knowledge of human factors in flight-path management, and improve accident investigation practices in these contexts:

1. Develop and implement standards and guidance for maintaining and improving knowledge and skills for manual flight operations that include the following: pilots must be provided with opportunities to refine this knowledge and practice the skills, training and checking should directly address this topic, and operators’ policies for flight-path management must support and be consistent with the training and practice in the aircraft type.

2. For the near term, emphasize and encourage improved training and flight-crew procedures to improve autoflight mode awareness as part of an emphasis on flight-path management. For the longer term, equipment design should emphasize reducing the number and complexity of autoflight modes from the pilot’s perspective and improving feedback to pilots (for example, on mode transitions) while ensuring that the design of the mode logic assists with pilots’ intuitive interpretation of failures and reversions.

3. Develop or enhance guidance for documentation, training and procedures for information automation systems (including communications automation) (for example, EFBS [electronic flight bags], moving map displays, performance-management calculations, multifunction displays) or functions. Describe what is meant by information automation and what systems (or) equipment are included, define terms associated with information automation, develop guidelines concerning the content and structure of policy statements in flight operations policy manuals for information automation, and develop operational procedures to avoid information automation-related errors.

4. In the near term, develop or enhance guidance for flight-crew documentation, training and procedures for FMS use. For the longer term, research should be conducted on new interface designs and technologies that support pilot tasks, strategies and processes, as opposed to machine or technology-driven strategies. Among contextual notes, the report says: “Consideration should be given to a new, much simpler flight-path management system design from the pilot’s perspective (closely integrating new FMS designs with evolving airspace requirements).

5. Research should be conducted and implemented on processes and methods of verification and validation (including validation of requirements) during the design of highly integrated systems that specifically address failures and failure effects resulting from the integration.

6. Flight-crew training should be enhanced to incorporate all of the flight-deck system design that are needed for operation of the aircraft (such as system relationships and interdependencies during normal and non-normal modes of operation for flight-path management for existing aircraft fleets). For example, manufacturers should design flight deck systems such that the underlying system is more understandable from the flight crew’s perspective by including human-centered design processes. Among contextual notes, the report says: “The integration of multiple systems should be designed such that the flight crew has clear, definitive and well-understood actions in the event of failures or degraded modes.”

7. Develop guidance for flight-crew strategies and procedures to address malfunctions for which there is no specific procedure.

8. For the near term, update guidance and develop recommended practices for design of SOPs [for flight crews] based on manufacturer procedures, continuous feedback from operators, and lessons learned. This guidance should be updated to reflect operational experience and research findings on a recurring basis. For the longer term, conduct research to understand and address when and why SOPs are not followed. The activities should place particular emphasis on monitoring, cross-verification, and appropriate allocation of tasks between pilot flying and pilot monitoring.

9. Operators should have a clearly stated flight-path management policy as follows: The policy should highlight and stress that the responsibility for flight-path management remains with the pilots at all times. Focus the policy on flight-path management, rather than automated systems. Identify appropriate opportunities for manual flight operations. Recognize the importance of standardization of systems as a tool (among other tools) to support the flight-path management task, and provide operational policy for the use of automated systems. Distinguish between guidance and control. Encourage flight crews to tell [ATC] “Unable” (to complete with flight-path management) when appropriate. Adapt to the operator’s needs and operations.

Develop consistent terminology for automated systems, guidance control and other terms that form the foundation of the policy. Develop guidance for operators on methods of verification and validation. Among contextual notes, the report says: “The operator’s policy should provide guidance on the operational use of automated systems (including examples of circumstances in which the autopilot should be engaged, disengaged, or used in a higher or lower authority mode; the conditions under which the autopilot or autothrottle will or will not engage, will disengage, or will revert to another mode; and appropriate combinations of automatic and manual flight path control (for example, autothrottle engaged with the autopilot off).”

10. Discourage the use of regional or country-specific terminology in favor of international harmonization. Implement international harmonized phraseology for amendments to clearances and for reclassifying onto (approach) procedures with vertical profiles and speed restrictions. Implement education and familiarization outreach for air traffic personnel to better understand flight-deck systems and operational issues associated with amended clearances and other air traffic communications. In operations, minimize the use or termination of runways-assignment changes through a combination of better planning and understanding of the risks involved.

11. Continue the transition to performance-based navigation (PBN) operations and drawdown of traditional navigation with limited utility (or potentially higher risk for example, those procedures that lack vertical guidance). As part of that transition, address procedure design complexity (from the perspective of operational use) and mixed-equipage issues. Standardize PBN procedure design and implementation processes with inclusion of recommended practices and lessons learned. This includes arrivals, departures, and approaches.

12. Ensure that appropriate human-
factors expertise is integrated into the flight-deck design process in partnership with other disciplines, with the goal of contributing to a human-centered design.

To assist in this process, an accessible repository of references should be developed that identifies the core documents relevant to recommended practices for human-centered flight deck and equipment design. Early in the design process, designers should document their assumptions on how the equipment should be used in operation.

13. Revise initial and recurrent pilot training, qualification requirements (as necessary), and revise guidance for the development and maintenance of improved knowledge and skills for successful flight-path management.

14. Review and revise, as necessary, guidance and oversight for initial and recurrent training and qualification for instructors/evaluators…to successfully teach and evaluate airpane flight-path management, including use of automated systems.

Accident insights

Among the diverse insights brought to the working group, a number are now being considered coincidentally by accident investigators assigned to recent accidents.

“Since the working group completed its data collection and analysis, several accidents have occurred where the investigative reports identified vulnerabilities in the events that are similar to those vulnerabilities identified in this report,” the report says. These vulnerabilities represent systemic issues that continue to occur. Other factors that affect the pilots’ (automation-related) decisions include the high reliability of the systems (costing insufficient cross-verification, not recognizing autopilot or autothrottle disengagement, or not maintaining target speed, heading or altitude). This may be exacerbated in the future by some new airspace procedures that are so complex and require such precision that flying manually is impractical or not allowed, because of the likelihood of deviation. Although there is general industry consensus that monitoring, cross-verification allowed, because of the likelihood of deviation. Although there is general industry consensus that monitoring, cross-verification and error management are important, these topics are not always explicitly trained.”

To produce the report, the working group analyzed accidents, incidents and normal operations for various periods ending in July 2009 and conducted interviews with manufacturers, operators and training organizations. Other sources were reports from related activities, including those confidentially submitted by individuals and organizations; various types of observations and analyses during LOSAs, from the archives of the LOSA Collaborative; and personal knowledge and experiences of working group participants, including James M. Burin, then Flight Safety Foundation’s director of technical programs.

Notes

The working group defined vulnerability in the context of flight-path management, as “a characteristic or issue that makes the system or process more likely to break down or fail repeatedly.”

“Since a 1996 FAA report on the interfaces between flight crews and modern flight-deck systems, the Automation Subcommittee of the Air Transport Association of America (now Airlines for America) produced four papers on recommended practices for training and use of automated systems, and a US Commercial Aviation Safety Team safety enhancement facilitated further work on mode awareness and automation policy for airlines,” she says.

Abbott told the hearing that among the FAA’s most relevant regulatory amendments or new regulations implemented between 1996 and 2013 is Federal Aviation Regulations Part 25.1509 on flight guidance systems, which include autopilots, autothrottle/ autothrust systems and flight directors. Others are Part 25.1002, Installed Systems and Equipment for Use by the Flight Crew, covering design-related pilot error, and amendments to Part 25.1322 on flight deck alerting systems. Updated guidance based on the period’s research includes Advisory Circular 25-11 on electronic flight deck displays.

NTSB panelists asked the working group co-chairs, “Why did it take 17 years to update the 1996 report?” Abbott said that the deliberative rulemaking processes involved are inherently time consuming, and that automation-related improvements to pilot training—a number of them dating from the 1996 report—needed to be implemented gradually by the industry, given time to become effective and then assessed over a number of years for the FAA to determine the safety results.

Mckenney told the hearing that a key 2013 report finding was that during an airline pilot’s career, skills evolve over time. “This increase in pilot knowledge and skills is not diminished as a result of the automated systems but is actually increased,” he says. “It also requires pilots to be even more of a pilot [in terms of manual flight operations] and also a systems manager, where we have to not only control the aircraft but also manage the additional systems that have been put in the flight deck.”

Another working group consensus was that overall there is “incomplete understanding of complex relationships in modes of flight director, autopilot, autothrottle and autothrust and (FMS) computers, including such things as system limitations, the operating procedures and the need for confirmation and cross-verification— as well as the mode transitions and behavior,” he says.

Training improvements that, for now, appear to be most relevant to the current Asiana accident investigation, are knowledge of when to use various combinations of the automated systems, the situations that can lead to distractions and strategies to prevent these distractions, both on the ground and in flight, he says.

Other key areas appear to be knowledge related to the mode logic and maintaining awareness of the state of the system modes, task workload management, automation management, automated system mode management and decision making.

Asked for other personal insights into the context of the Asiana accident, he noted the investigative hearing’s other testimony that suggested gaps can exist between airplane manufacturers’ assumptions about pilot capabilities to solve immediate problems by reducing the automation level or by full manual flight operations.

“What we are saying with the flight-path management is that … [although] we train the pilots to operate the systems, we don’t train the pilots well [in], actually how they maintain the flight path of the aircraft using the automated systems,” he says. “It’s more (about how) we interface with the system but not actually how to use that — and especially in unexpected situations where they may find themselves not in the pristine environment [in which] they are trained in the simulator. … We train how the automated systems work well, but we don’t train the exceptions … We could do that very easily.”

Notes

...the hearing’s other testimony that suggested gaps can exist between airplane manufacturers’ assumptions about pilot capabilities to solve immediate problems by reducing the automation level or by full manual flight operations.

Is it safe to innovate?

By Tony Bannister-Yrrell and Kirstie Carrick

Some readers will no doubt recall the introduction of Total Quality Management (TQM), the transition to RAAFQ and its associated programs, the Theory of Constraints and the more recent programs such as 5-Whys; 6-Sigma, Lean and continuous improvement. These programs and others like them, focus attention on business-process improvements, doing more with less and, ultimately, working smarter.

But when it comes to innovation, how do these initiatives interact with the regulatory requirements of AEO and AMO compliance? Innovation, innovative thinking and innovative decision-making are cornerstones of business-improvement processes; but how can these be effectively applied within the aviation maintenance domain? Importantly, at what point does an innovation become a violation?

Effort has been applied to researching innovation in the aviation domains of aircrew, cabin crew, air traffic management, engineering and maintenance. However, similar research effort has not focused on the inter-relationship of innovation and violation. Maintenance manuals, technical publications and procedures are, by design, detailed, descriptive and directive and comprehensively linked to the Original Equipment Manufacturer (OEM). They are routinely subjected to design-engineering reviews and updates yet, within the aviation maintenance domain, procedure non-compliance has been identified as a substantial causal factor in aviation accidents and incidents.

So it should come as no surprise that within the current regulatory framework a decision by a technician, maintenance supervisor or inspector to deviate from an approved procedure is fundamentally a decision-error and potentially an intentional violation. Therefore, to what extent can innovation be recognised as a legitimate action from the same decision process?
Defining the problem

In order to understand innovation we first need to understand why an aviation maintenance person would want to deviate from the stated procedure. The research conducted to date suggests there are a number of triggers. These are wanting to improve the process of the task; reducing required resources (labour, GSE, spares etc.); reducing the time taken to complete the task; outdated publications; and confusing or incorrect publications. Given some of these examples it could be assumed that older fleets were more susceptible to these triggers; however, there is evidence that newer fleets with electronic publications are just as much at the mercy of innovative approaches to the maintenance situation changes.

What is not evident from the triggers identified above is the primary factor — that being, how was the decision to deviate arrived at? To what extent did the individual’s aircraft knowledge and task competency dictate their willingness to pursue an alternate path? In making a deviation decision, what criteria was the risk of that deviation assessed, mitigated and managed against? There is a need to understand the relative importance that each of these elements (knowledge, competency and risk) has on an individual’s willingness to apply an innovative approach to a maintenance task and the extent to which individual understands or accepts the violation risk.

The constraints and limitations imposed by maintenance manuals and procedures are unlikely to provide any degree of latitude for a technician or supervisor to vary their approach to a maintenance task. Indeed it would be argued by an airworthiness regulator that compliance with the approved publication was the only applicable approach. So the need for process improvement and enhanced resource utilisation requires a balanced approach to ensure that maintenance of an effective systems safety program also caters for the development and implementation of process improvements.

The violation pathway

Violations are routinely described as mistakes, errors, slips and non-compliance. It has been suggested that these descriptors rarely, if ever, mention innovative approaches to maintenance. Some researchers have gone further and have argued for maintenance personnel to be able to act on the basis of attaining enhanced systems knowledge. James Reason (1997) also argued that departures from procedures could lead to easier and more efficient ways of conducting maintenance. Therefore, the requirement exists to capture innovative events, to understand the associated decision processes and to ensure that generated efficiencies are conceptualised and enacted. However, where such action is contrary to a regulation, manual or procedure, regardless of the new knowledge or the extent of innovation, it will likely expose the maintainer to an unintended or perhaps intentional violation outcome.

Decisions and behaviours

Should innovation in aviation maintenance be treated as a raise-train-sustain activity or should it be prosecuted on a capture-and-kill approach? The answer to that question requires an understanding of the fundamentals of innovation within the aviation maintenance domain. Fishbein and Ajzen’s Reasoned Action Approach (Figure 1) describes a theoretical decision process based upon an individual’s behaviour.

In this approach, an intent to pursue an innovative decision is depicted through the diagram as being influenced by beliefs, norms and behaviours, thereby resulting in a decision outcome. Importantly, this also links to Ajzen’s (2012) theory of planned behaviour, which notes that behaviour is guided by intention. Ajzen implies that a strong relationship exists between intentions and behaviour and, secondly, that a change in intention would be followed by a change in behaviour.

Decision-making in the aviation maintenance domain is often the result of changing situations or circumstances. What then is the impact on intent when the maintenance situation changes?

Some researchers have observed that considerable organisational effort would be required to effectively deal with unofficial decision events, where such effort is not supported by fundamental organisational processes. Hence, technicians and supervisors operating outside of system constraints are liable to be exposed to punitive actions for the conduct of an act of violation rather than passive innovations being captured, harnessed and shared.

The issue for airworthiness regulators and compliance assessors is to be satisfied that all required maintenance has been undertaken and appropriately certified. However, given the results of various published research, the apparent tendency of technicians and supervisors towards non-compliance with technical instructions presents a challenge for effective safety management and safety-system functionality.

Workplace learning and culture

When it comes to workplace learning and culture there have been interesting observations with regards to how and why. Much training effort is focused on the how, that is, this is how you do steps one through 10; however, what some have argued is that there needs to be as much attention paid to the why, such as “the reason we do this is …”.

An alternative approach is to focus on tradespersons becoming expert practitioners rather than just learning about how to practice. For the most part procedures seldom deal with the why, yet they become the first line of defence in investigation outcomes, where new procedures are introduced to correct a causal failure. Research has shown that individuals are likely to develop sophisticated work-arounds when confronted with over-proceduralisation, especially when such procedures and work practices were laden with dilemmas, inconsistencies, and unpredictability. These work-arounds are not supported by the
in defining the foundations upon which individual technicians and maintenance supervisors behave. Fogarty and Shaw (2010) observed that despite best intentions, some individuals felt incapable of undertaking maintenance tasks in accordance with published rules and procedures because of the impact of external factors deemed to be outside of their control. Importantly, how an individual decides to act is influenced by the extant cultural system within which they work, the knowledge held, organisational and personal beliefs; their understanding of the risks associated with the task, and their demonstrated level of task competency.

Maintenance innovation in aviation project

Our current research project in maintenance innovation, examines aviation-maintenance decision outcomes where innovation was the driving consideration. This is intended to lead to an understanding of the motivators and drivers of innovative maintenance actions and how such decisions are conceived and implemented. The overall intent of the project is to bring into focus the currently blurred aperture between innovation and violation in aviation maintenance and in so doing seeks to address fundamental human-factors implications for aviation maintenance and the broader aviation safety expectations and requirements. The project is supported by the University of Newcastle and is approved for ADF participation by the Defence People Research Law Risk Ethics Panel.

Participants for the study are being drawn from aircraft maintenance personnel across the domains of commercial airlines, contractor, heavy maintenance, Defence and general aviation. Participation from airworthiness regulators, aviation investigators, policy developers and initiators has also been garnered.

In the context of aviation safety management the intent of this research project is to identify the decision processes, constraints and procedural improvements required to better define, or at the very least diminish, the blurred line between innovation and violation in aviation maintenance. Thereby to develop an understanding of the decision practices that encourage maintenance innovation and which will enable the capitalisation of innovative outcomes whilst ensuring aviation safety remains the paramount priority.

Conclusion

Opportunities to capture and capitalise on innovative approaches to aviation maintenance are being stifled by a failure to effectively identify extant innovations. Establishing a baseline model that explains and predicts aviation maintenance innovative behaviour will assist in the development of improved decision outcomes.

Understanding that violations can be the result of an intended decision process will provide an enhanced framework within which aviation maintenance personnel can function and within which the conduct of maintenance can be more effectively managed. Of equal importance to aviation maintenance task completion is the awareness and acceptance of known risks and the application of a decision rule to manage those risks.

An enhanced safety systems approach is required to identify, validate and initiate innovative thinking and innovation needs to be distinguished from violation and treated appropriately. There needs to be a process to capture, record and capitalise on innovation that supports and maintains an effective systems safety approach. The observation that “we should not need another accident to remind us that promoting the effective management of maintenance error enhances safety of flight” (Kanks, 2010, p. 693) highlights existing decision event anomalies and the need for improvement. Addressing innovation within the aviation maintenance domain is yet one more step in the greater safety management journey.

References and further reading

About the authors:

During undertaking this project he was the AusAero P3 Senior Maintenance Manager, and before that served 20 years in the RAAF. He completed a PhD under the supervision of Tony Bannister-Tyrell at the University of Newcastle. He has published an international journal article in the area of aviation safety theory. Tony Bannister-Tyrell is a PhD student at the School of Psychology at the University of New South Wales. He has published a paper on the work environment in the area of aviation safety and has presented her work at international conferences. Tony Bannister-Tyrell is a PhD student at the School of Psychology and Coordinator of the Australian Master of Aviation Management program. She has published an article on the work environment in the area of aviation safety and has presented her work at international conferences.
On the afternoon of 28 August 1972, while on a flight from Lae to Port Moresby, Caribou A4-233 crashed in the Kudjeru Gap some 18 miles (29 km) south of Wau. The aircraft had a crew of three and carried 26 passengers including 24 PNG army cadets. The only survivors were five of the cadets, one of whom later died in hospital from injuries sustained in the crash.

Tasked with carrying out an Army support task, Caribou A4-233 departed Lae for Port Moresby 2.01 pm. The flight proceeded normally and at 2.26 pm a position report was made over Wau at a height of 6500 feet and estimating being abeam Mount Yule at 1450 hours. No further transmissions were heard from the aircraft. At 3.39 pm a distress phase was declared and a search and rescue operation began immediately. Three days later a searching Army Sioux helicopter, found four survivors and, close to last light on that day, a further very seriously ill survivor was found at the crash site.

Examination of the wreckage

The aircraft crashed at 4800 feet AMSL on the northern side of a 5000-foot ridge that lies on the western side of the Koperia River in the Kudjeru Gap. Marks in the tree tops 100 yards [91.4 m] south of the ridge line and 50 feet below the crest, plus a debris trail leading to the crash site, indicated that the aircraft was proceeding in a northerly direction before contacting the trees. The average gradient on either side of the crest of the ridge was 35 degrees.

The debris trail commenced with the green glass from the starboard navigation light, which was found on the south side of the crest. At the crest, major portions of the starboard mainplane, starboard tailplane and starboard propeller were located and 300 yards further north the debris trail terminated at the fuselage, which was propped up at 70 degrees tail fin uppermost, by a tree.

The forward cargo compartment had suffered massive damage and the cockpit had been completely burnt out. The mainplane section from the starboard engine nacelle to the port wingtip was lying adjacent to the forward fuselage and the starboard engine was found 100 yards away to the east down the steep slope.

Discussion of the evidence

The accident occurred in transit from north to south on the Kudjeru Valley route between Lae and Port Moresby. The crew had flown this route four times during the preceding three days and twice earlier on the same day.

The evidence indicated that the initial transit into the valley was at 6500 feet, but cloud prevented the crew maintaining visual flight in the valley and, confronted with lowering cloud over a rising valley floor, the pilot turned back. During the turn or soon afterwards, the aircraft struck trees at about 4900 feet altitude and crashed into heavy jungle some 400 yards from the initial impact point.

There were no major deviations from flight plan, except that the captain had initially elected to remain at 3000 feet after departure from Lae because of weather.

The next call from the aircraft placed it at 6000 feet, and later a position report abeam Wau stated it was at 6500 feet. At this point the captain was probably influenced by the weather in the Wau area, which was clear and had probably decided to transit low level through the valley because 6500 feet could be maintained at the entrance.

As the flight progressed down the valley, cloud cover increased and the cloud base lowered almost to the valley floor. Approximately 20 miles south of Wau, where the valley begins to narrow, conditions deteriorated and no further visual flight was possible. A turn was made to reverse course to the north and a climb was initiated. At this point the aircraft possibly entered cloud. The right wing struck tree tops at a point about 50 feet below the ridge line. The aircraft continued up the side of the ridge contacting the tops of trees and shedding fragments until several large trees near the crest caused major damage to the right wing and right tail plane. Control was lost and the aircraft continued on a northerly trajectory finally impacting on the northern side of the ridge in a steep nose down attitude.

A detailed examination of the engines and airframe was carried out and there is no evidence to suggest that a technical defect caused the accident. The crew had correctly...
reported deviations from flight plan and position reports, and there is no reason to believe that they would not have broadcast a distress message, if some in-flight emergency had arisen. There was no evidence to suggest that crew fatigue had any bearing on the accident. The crew had flown 5.30 hours on the preceding day and approximately 3.30 hours on the day of the accident.

Pilots operating in PNG are generally very conscious that local weather conditions can change rapidly. On the morning of the accident the captain had received the standard area forecast from the Lae weather office but had not received the updated forecast, which was available at Lae, before the last sortie. This is not considered significant as he had just flown over the route. However, this flight had been made at 9500 feet above the weather, possibly because conditions were not suitable to transit the valley at low level.

Considering these possible conditions, the captain’s decision to transit the route low level some two hours later is difficult to understand. It may have been that he wished to avoid flying above the overcast with its associated risk of IMC flight below safety height, should an engine fail.

The crew

The captain was a category C Caribou captain, with flying experience totaling 979 hours all types, 712 hours Caribou and 123 hours captain on type. He had flown two PNG trainer exercises during 1971, one while undergoing conversion course and the other preparatory to a four month detachment to PNG in that year. His total in-country flying experience was 216 hours. The co-pilot was a current category C Caribou co-pilot, with flying experience totaling 816 hours all types and 22 hours captain on type. He had flown 195 hours in PNG, completed a PNG training exercise during conversion course and spent three months flying in PNG during 1972.

Flight authorisation

The flight was correctly authorised by the Squadron Operations Flight Commander and the crew was operating under proper authority at the time of the accident.

Briefing

The crew was briefed at Richmond, initially by the Deputy Operations Flight Commander and later by the Flight Commander. In these briefings the three alternate standard routes between Lae and Port Moresby were explained and the Flight Commander also instructed the captain to obtain further detailed local briefing from the Squadron detachment on his arrival at Port Moresby.

The captain did not obtain the additional briefing at Port Moresby. During the three days preceding the accident the crew flew between Port Moresby and Lae five times and flew from Lae to Port Moresby on the morning of the day of the accident via the same route albeit at 8000 feet. They returned to Lae transiting the Kudjeru Valley at 9500 feet approximately two hours before the accident. Therefore, they were familiar with the conditions generally and the accident is not attributable to any deficiency in briefing. However, the captain may well have failed to appreciate fully the rapidity with which conditions could deteriorate. Further, there is no direct evidence to indicate he had previously flown through the particular valley under the weather conditions prevailing at the time of the accident.

Conclusion

The evidence indicates that the most probable cause of the accident was that the pilot lost control of the aircraft after striking trees as a result of an error of judgment, in that he did not turn back at an earlier stage of flight, when confronted with deteriorating weather. The cause of the accident has been assessed therefore: (a) Aircrew Error — Error of Skill — Collision with the ground

Comment

It is considered that a pilot with more experience in PNG operations would, in the prevailing weather conditions, probably have expected cloud in the valley and elected to transit above the weather. Further, a pilot with more knowledge of that particular valley, transiting below cloud, would probably have turned back earlier. But the suggestion that a pilot with more local knowledge would have made the same error is speculative.

No amount of further briefing, counselling or advice would have better fitted the captain for the particular flight on which the accident occurred. The captain had three days experience of local flying immediately before the day of the accident. He had flown between Port Moresby and Lae a total of 20 times, but evidence suggests strongly that he had not previously attempted to negotiate the valley below a low overcast.

... most probable cause of the accident was that the pilot lost control of the aircraft after striking trees as a result of an error of judgment, in that he did not turn back at an earlier stage...
AVIATION SAFETY SPOTLIGHT 02 2017

ASO (I) Aviation Safety Officer (Initial) Course

COURSE AIM: To graduate Unit ASOs, Maintenance ASOs and Flight Senior Maintenance Sailors.

PREREQUISITES: Personnel who are required to perform the duties of an ASO.

COURSE DESCRIPTION:
The course provides theory and practical exercises in the broad topics of the Defence Aviation Safety Management System, an introduction to human factors and the organisational accident model, incident investigation and reporting.

ASO (A) Aviation Safety Officer (Advanced) Course

COURSE AIM: To graduate Base, Wing, Regiment, Fleet, Group and Command ASOs.

PREREQUISITES: ASO (I) Practical and applied experience as an ASO (or equivalent).

COURSE DESCRIPTION:
The course provides theory and practical exercises in the broad topics of the Defence Aviation Safety Management System, advanced human factors and risk management, and base emergency response. Includes a practical CRASHEX component.

NTS Aviation Non-Technical Skills Trainer

COURSE AIM: To graduate students with the knowledge and skills to deliver non-technical skills training.

PREREQUISITES: A solid background in Crew/Maintenance Resource Management and/or Human Factors.

COURSE DESCRIPTION:
The course provides the theoretical background of aviation non-technical skills and trains students in the skills and knowledge for delivering non-technical skills training. The course also introduces students to scenario based training and assessment techniques.

AIIC Aviation Incident Investigator Course

COURSE AIM: To develop members with the skills to conduct aviation incident level investigations in support of their ASOs.

PREREQUISITES: Any personnel who are involved with Defence aviation. There is no restriction on rank, defence civilians and contractor staff are also welcome to attend.

COURSE DESCRIPTION:
This one-day course provides theory (taken from the ASO(I) course) on the topics of the Defence Aviation Safety Management System; generative safety culture; error and violation; the organisational accident model; incident-level investigation and hazard reporting and tracking. Interested personnel should contact their ASO.

COURSE DESCRIPTION:

COURSE NAME /**NUMBER**	**DATES**	**LOCATION**	**NOMINATIONS CLOSE**
1/17 ASO Course (I) | 27-31 Mar | Canberra | 27 Feb
2/17 ASO Course (I) | 8-12 May | Canberra | 10 Apr
3/17 ASO Course (I) | 26-30 Jun | Edinburgh | 1 Jun
4/17 ASO Course (I) | TBA | | |
5/17 ASO Course (I) | TBA | | |
6/17 ASO Course (I) | TBA | | |
1/17 ASO Course (A) | TBA | | |
2/17 ASO Course (A) | TBA | | |
3/17 NTS Course | 15-19 May | Canberra | 17 Apr
2/17 NTS Course | 31 Jul to 4 Aug | Canberra | 10 Jul
3/17 NTS Course | 20-24 Nov | Canberra | 23 Oct

COURSE NAME /**NUMBER**	**DATES**	**LOCATION**
1/17 AIIC | 4 Apr | Darwin
2/17 AIIC | 6 Apr | Tindal
3/17 AIIC | 17 May | Richmond
4/17 AIIC | 5 Jul | Edinburgh
5/17 AIIC | 2 Aug | Amberley
6/17 AIIC | 16 Aug | Williamtown
AIC | TBA | | |
Are you aware?

The Defence Aviation Hazard Reporting and Tracking System (DAHRTS) will be replaced in February 2018.

The Aviation Safety Management Information System (ASMIS) Project is delivering a better aviation safety reporting system that will enhance Defence's ability to learn and take action to improve safety.

Information packs and training opportunities are on the way.

Get ready for 2018

For more information visit the DDAAFS intranet