Propulsion Structural Integrity Section

Contribution to safety, capability and cost of ownership

WGCDR David Hood
DD P/HSI, NDT&CT, DAVENG-DASA

Defence Aviation Safety Authority
Scope of brief

• Propulsion Structural Integrity section mandate

• Track record & examples of value (with DSTG and QinetiQ)

• Is there a future need?

• The importance of DSTG and QinetiQ
PSI Section mandate

• **DASA Vision:**
 – *'Capability First, Safety Always’*

• **DAVENG Business Model** describes a **stewardship role** for SI management ---* safety, capability & cost of ownership:*
 1. Ensure safety is maintained to acceptable levels
 2. Ensure platforms reach their PWD
 3. Avoid unforcasted refurbishments
 4. Optimise maintenance / minimise maintenance downtime
 5. Contribute to the achievement of planned aircraft availability

• **Notes:**
 – **Policy:** DEFLOGMAN Part 2, Vol 10, Chap 18
 – Identical roles to our airframe SI section peers
 – These roles should be common to all in this room
Track record & examples of value

• **Complex / difficult business:**
 – Access to data
 – Access to SME resources (QQ, DSTG, OEM)
 – Relatively fragile QTE construct compared to FW SI:
 • Fewer Masters qualifications
 • Smaller pool for OIC ESI position
 – **Acknowledge:** at times our support has been limited / imperfect

• **Many recent examples of value add:**
 – MRH-90 turbine blade RA (avoid blade replacement program – capability)
 – S-70B-2 EOT life limits (simplified logistics system – cost of ownership)
 – F/A-18F/G engine RA for continued operations (capability)
 – P-3C critical part inspection limits (safety)
 – PC-9 mission analysis (safety)
 – F/A-18A/B HPT ACP / RS risk assessment & MPTF (capability)
 – WDA laboratory (safety / capability)
 – Evolution to PSIP (clarity and more holistic management)
Is there a future need? Strategic view:

- **Sovereign Structural Integrity Capability**
 - Some capabilities are so important for national security that they must be retained and controlled by Australian Defence and industry
 - A sovereign SI management capability:
 - Supports capability and cost of ownership
 - Provides independence from foreign governments and companies
 - How much / what level is enough? DAVENG currently working to define

- **Challenges (or opportunities?) for PSI:**
 - How much / what level is possible?
 - Greater collaboration with OEMs
 - Eg Rolls Royce industry placement
 - How do we access more OEM information?
 - DSTG support to Force-in-Being – already too weak in some areas
 - Greater utilisation of QQ
 - Greater partnering with foreign militaries
Is there a future need? Tactical view:

• **Do more of the same, eg:**
 – **Cross-platform issues:**
 • Support component lifing issues / RA
 • Optimise HUMS and how we use, certification requirements
 • Advance CM programs (eg Chipcheck) / discrete issue management
 • Support for Mission Analyses
 • DSTG task sponsorship
 – **Romeo Seahawk:** validate ADF usage
 – **Chinook:** quantify effect of IRSS (potential for increased engine life limits)
 – **Taipan & Tiger:** higher fidelity HUMS (data quality, uses for data)
 – **HAFT-TD:** refined/new RW certification requirements, MOC and approaches
 • Spinoffs for engine critical part lifing?
 – **F-35 JSF:** engine certification
 – **C-27J:** propeller balancing certification requirements
Is there a future need? Tactical view:

- **Do more of the same, eg:**
 - **PSI sees across the entire community, objectively**
 - Ability to steward / lead problem resolution effectively
 - **Important conduit between DSTG and the community. Generally:**
 - PSI understands DSTG better than the operating community
 - PSI understands the operating community better than DSTG

=> Link problems with solutions
=> Steward tasks to completion
The importance of DSTG

• **Essential S&T support to PSI and for the F-I-B:**
 – Component/structure life management, independent of OEM
 – Validation / exploration of OEM life limits and related analyses
 – Validation of OEM risk assessments for technical issues
 – Conduct of independent risk analyses for in-service events
 – Independent research/investigation into in-service events & issues
 • HUMS
 • Condition Monitoring
 • Lifing policy
 • Component durability, reliability
 – Forensic investigation services
 – Emerging NDT technology, processes, equipment, methods, etc

 – LRR supporting capacity to undertake activities such as those above
 – Access to OEMs, other S&T organisations and academia
What PSI wants from DSTG in future

• Continued support to PSI and the F-I-B:
 – AD Plan ‘Roadmaps’ (AD strategy):
 • Certified Additive Manufacturing
 • Advanced Sensors
 • Data Analytics
 • Composite lifing
 – But also, more of the same from the last slide
 • Propulsion system support already ‘too thin’ in some areas
What PSI wants from DSTG in future

- **My view: need for DSTG support to the F-I-B will grow:**
 - Ever increasing complexity in aero engine design / performance
 => new, difficult problems
 - Reducing fleet sizes and increased cost
 => Each individual asset is more important
 - Challenges of:
 - Data access
 - Influence / innovation / inflexibility in global fleet management models
What PSI wants from DSTG in future

• **Growing need:**
 – Innovative ways to ‘work around’ typical limitations (eg access to data)
 • Eg indigenous relifing of critical parts
 • Eg indigenous HUMS improvements
 • Eg greater support to CM in all forms
 – Continued and greater engagement with peers (eg US military S&T organisations) and academia
 – Greater liaison with OEMs for specific projects (eg new lifing methods)

• **So if you agree – make a noise**
 – DSTG task planning
 • Engage PSI for coordination
 – Engage DSTG direct
Opportunity for DAVENG industry partner (QinetiQ)

• PSI has not historically utilised QQ to any significant degree
• Opportunity to increase PSI capacity / output
 – See relevance increasing in similar way to DSTG

• Increasing challenges relating to IP (access to data that the ADF holds)?
QUESTIONS?

PSI section contribution to safety, capability & cost of ownership:
1. Ensure safety is maintained to acceptable levels
2. Ensure platforms reach their PWD
3. Avoid unforcasted refurbishments
4. Optimise maintenance / minimise maintenance downtime
5. Contribute to the achievement of planned aircraft availability