Innovative Sustainment of ADF Helicopter Structural Integrity

March 2019
<table>
<thead>
<tr>
<th></th>
<th>Outline</th>
</tr>
</thead>
<tbody>
<tr>
<td>1</td>
<td>Fatigue Management - Helicopters</td>
</tr>
<tr>
<td>2</td>
<td>Fixed Wing vs Rotary Wing</td>
</tr>
<tr>
<td>3</td>
<td>Traditional Helicopter Usage Monitoring</td>
</tr>
<tr>
<td>4</td>
<td>Flight Manoeuvre Recognition</td>
</tr>
<tr>
<td>5</td>
<td>Extending Component Retirement Times</td>
</tr>
<tr>
<td>6</td>
<td>Risk Assessment</td>
</tr>
<tr>
<td>7</td>
<td>Condition Data and Corrosion Sensors</td>
</tr>
<tr>
<td>8</td>
<td>Being a Smart Customer</td>
</tr>
<tr>
<td>9</td>
<td>Loads and Vibration</td>
</tr>
</tbody>
</table>
Fatigue Management - Helicopters

• Design and Fatigue Life Assumptions
 – Understanding the design assumptions
 – Testing assumptions through usage monitoring
 – Measuring fatigue drivers
 – What is the aircraft condition telling us?

• Component Retirement Times (CRTs)
 – Safe life
 – Assumptions made when calculating CRTs

• Design Usage Spectrum
 – Composite worst case usage spectrum
 – Load spectrum and manoeuvres
 – Measuring complicated fatigue drivers
Fixed Wing vs Rotary Wing

• High Cycle fatigue
 – Loads on dynamic components for each rotation of the rotor
 – Small changes in stress = large change in number of cycles

• Critical components replaced

• Complex DUS
 – Expressed as a percentage of flight time
 – Less severe for one component may be more severe for another component

• Asymmetrical Loads
 – Left hands turns more damaging than right hand turns for some components due to rotational forces

• Lack of access to lifing substantiation
Traditional Helicopter Usage Monitoring

• Many fatigue drivers are difficult to record / measure

• Manually record a limited number of fatigue drivers
 – Even simple fatigue drivers are difficult to record accurately

• Critical Structure consists of rotating components
 – Loads are often difficult to measure

• Compare to DUS which may be poorly described

• Improving UM through Flight Manoeuvre Recognition
Flight Manoeuvre Recognition

- Analysis of Usage data to determine actual flight manoeuvres
 - Data from Flight Data Recorder or HUMS
 - Algorithms match flight data to DUS manoeuvres
 - Tested against flight test data to validate

- FMR outcomes can input to effective fatigue management
 - Allows capture of a higher percentage of fatigue drivers than traditional UM
 - Test assumptions made in FM / CRTs
 - Requires flight manoeuvres to be linked to fatigue damage
Flight Manoeuvre Recognition
Extending CRTs and Risk Assessment

- Extending Black Hawk CRTs using AUUS2 Spectrum
 - Based on severe Australian Spectrum
 - Until recently only used AUUS2 to reduce lives
 - Enable greater flexibility for the SPO

- Black Hawk Risk Assessment
 - No access to the required data to determine if changes apply to our CRE
 - Establish level of risk based on available information
 - Determine appropriate approach to reduce the risk
 - Work closely with stakeholders to agree on appropriate action in light of PWD

![Defence Harmonised Risk Matrix](image-url)

Risk Management in the Defence Aviation Safety Program
AC 003/2018
Condition Data and Corrosion Sensors

- Insufficient for effective fatigue or environmental degradation management
- Non marinised helicopters being deployed on LHDs
- Environmental degradation management should be addressed before there is an issue
 - management and technology perspective
 - Improve condition monitoring and environmental degradation management
- Understanding and managing degradation prone areas on the aircraft
- Using corrosion sensors and modelling to predict rates of corrosion
Being a Smart Customer

• What is the service provider being contracted to provide?
• Understand your CRE
• Understand the fatigue management system being employed
• What outputs are you going to get and what do they mean?
• ASSUMPTIONS – Are they relevant?
Loads and Vibration Monitoring

- Measure critical structure loads on ADF aircraft
- Better understanding of the applicability of OEM Design Usage Spectra
- Input to Romeo SLAP / SLEP
- Understand loads and vibration on the airframe to:
 - reduce “nuisance” cracking
 - avoid just moving the cracking to a new area