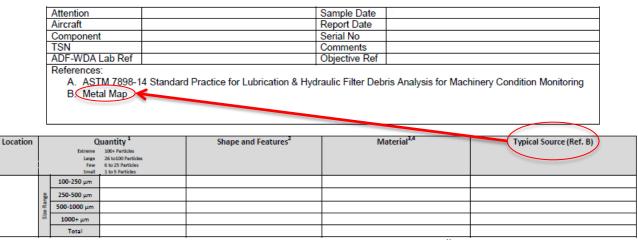


Using K-Nearest Neighbours (KNN) Machine Learning Technique to Classify Archived Helicopter Wear Debris Data

Eric Lee (DST Group)


ADF Wear Debris Analysis (WDA) Laboratory

- Joint Laboratory between Defence Aviation Safety Authority (DASA) Engine Structural Integrity (ESI) and Defence Science and Technology Group (DST Group)
 - Free service to ADF Air assets (Gas Turbine Engine, Gearboxes, and other mechanical systems)
 - Not "Oil" analysis, but metallic particles
 - Determine the size, quantity, morphology, and composition of particles
- Why? Features for Machine Learning
 - To improve the availability and safety of the Air asset without incurring the cost of removing the whole part

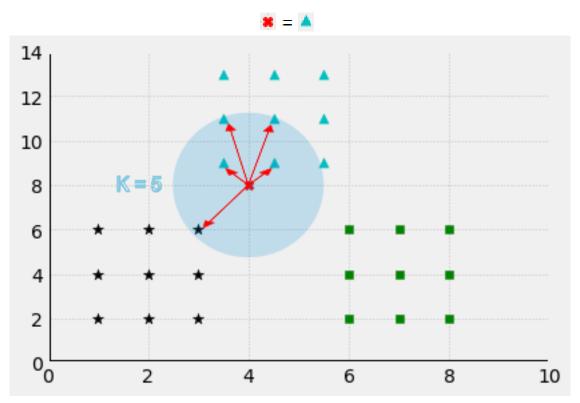
ADF Wear Debris Analysis (WDA) Laboratory

- Since the creation of the WDA Lab:
 - Filter Debris Analysis (FDA) for Fixed Wing and Rotary Wing ADF air assets
 - A large number of Wear Debris Analysis Reports (PDF)
 - Size and Quantity (According to ASTM 7898-14)

- Shape and Features (According to ASTM 7898-14)
- Material

What Next?

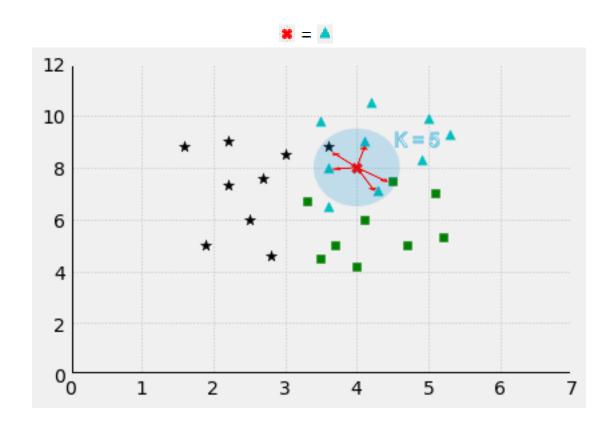
- Health and Usage Monitoring Systems (HUMS) Community:
 - A lot of data been recorded and archived, but no one is looking into the data
 - Why?
 - "Because there is too much data for any person to go through manually"
- Buzzwords:
 - Big Data
 - Data Fusion
 - Data Analytic/Mining (e.g. Machine Learning)


Machine Learning (ML)

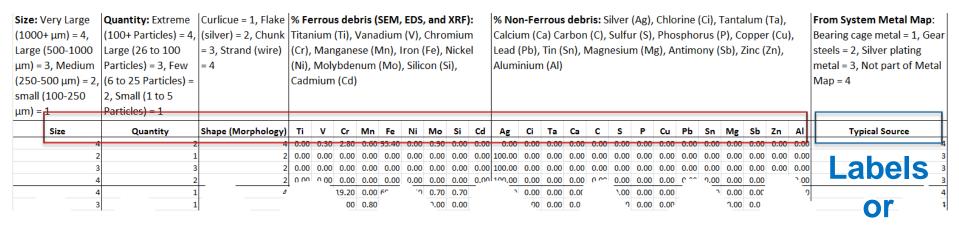
- Machine Learning:
 - One of the many methods that can perform Data Analytics
- What is Machine Learning?
 - In a simple description: ML is based on the idea that systems can learn from data, identify patterns, and make decisions with minimal human intervention
- Aerospace Community:
 - ML is the popular buzzword in recent years
 - Hardly any tangible working examples have been shown
 - Can it practically assist with large size data issues or a buzzword that eventually fades away?

Machine Learning (ML)

- A ML technique: K Nearest Neighbours (KNN)
 - Considered by many as an entry level ML technique
 - A supervised learning algorithm (Features and Labels)
 - Classifies the given dataset and learns patterns discovered
 - With learned knowledge perform classification on a given "Unseen" observation
- KNN, Pros and Cons:
 - Pros: No assumptions about dataset, Simple algorithm,
 Relatively high accuracy, and Versatile
 - Cons: Computationally intensive, High memory requirement,
 Stores all learned data, Slow when dataset is huge, and
 sensitive to irrelevant features


How Does KNN Work? (Linear Dataset)

Distances to the nearest five points can be calculated using:


- Manhattan distance
- Minkowski distance
- Euclidean distance (Most Widely Used for KNN)

How Does KNN Work? (Non-linear Dataset)

WDA Lab Main Gearbox (MGB) Records for KNN

- Database creation:
 - Converted 307 ADF Helicopter MGB WDA pdf reports
 - Each database entry contains: Size, Quantity, Shape, Debris Compositions, and Typical Source

Features

Classes

Setup KNN Analysis

Quarantine three data entries for trial purpose:

																										Typical
Size	Quantity	Shape (Morphology)	Ti	V	Cr	Mn	Fe	Ni	Mo	Si	Cd	Ag	Ci	Ta	Ca	C	S	P	Cu	Pb	Sn	Mg	Sb	Zn	Al	Source
Silver is	commonl	y used as a plating	on be	aring	cages																					
2	1	2	0.00	0.00	0.00	0.00	0.00	0.00	0.00	0.00	0.00	100.00	0.00	0.00	0.00	0.00	0.00	0.00	0.00	0.00	0.00	0.00	0.00	0.00	0.00	3
EX53 is a	EX53 is used for pinions of MGB																									
4	1	2	0.00	0.00	1.10	0.50	87.70	2.10	5.10	1.20	0.00	0.00	0.00	0.00	0.00	0.00	0.00	0.00	2.30	0.00	0.00	0.00	0.00	0.00	0.00	2
AISI 4130 steel is found in nuts, liners, miscellaneous components, cages of most critical bearings																										
4	1	4	0.00	0.00	1.10	0.80	98.10	0.00	0.00	0.00	0.00	0.00	0.00	0.00	0.00	0.00	0.00	0.00	0.00	0.00	0.00	0.00	0.00	0.00	0.00	1

- Database (304 entries) split for training and testing:
 - Randomly select 80% of the database data for training
 - Learning the patterns and classifying the database
 - Rest of the 20% data for testing
 - From knowledge learned in the 80% of data, test the knowledge with rest of the 20% data for accuracy
- Test the learned knowledge on unseen data entries
 - The three quarantined data entries

Wear Debris KNN Analysis Results

Three Unseen entries:

Size	Quantity	Shape (Morphology)	Ti	V	Cr	Mn	Fe	Ni	Mo	Si	Cd	Ag	Ci	Ta	Ca	C	S	P	Cu	Pb	Sn	Mg	Sb	Zn	Al
Silver is	commonl	on be	aring	cages																					
2	1	2	0.00	0.00	0.00	0.00	0.00	0.00	0.00	0.00	0.00	100.00	0.00	0.00	0.00	0.00	0.00	0.00	0.00	0.00	0.00	0.00	0.00	0.00	0.00
EX53 is a	EX53 is used for pinions of MGB																								
4	1	2	0.00	0.00	1.10	0.50	87.70	2.10	5.10	1.20	0.00	0.00	0.00	0.00	0.00	0.00	0.00	0.00	2.30	0.00	0.00	0.00	0.00	0.00	0.00
AISI 4130	AISI 4130 steel is found in nuts, liners, miscellaneous components, cages of most critical bearings																								
4	1	4	0.00	0.00	1.10	0.80	98.10	0.00	0.00	0.00	0.00	0.00	0.00	0.00	0.00	0.00	0.00	0.00	0.00	0.00	0.00	0.00	0.00	0.00	0.00

KNN Determined:

```
IPython console

C Console 1/A 

Python 3.6.4 | Anaconda, Inc. | (default, Jan 16 2018, 10:22:32) [MSC v.1900 64 bit (AMD64)]

Type "copyright", "credits" or "license" for more information.

IPython 6.2.1 -- An enhanced Interactive Python.

In [1]: runfile('E:/TempTransfer/WorkRelatedTasks/Machine Learning/SelfCodeKNN.py', wdir='E:/TempTransfer/WorkRelatedTasks/Machine Learning')

Average accuracy of 25 runs is: 0.9387

Sample is ID. as 3 using KNN method!

Sample is ID. as 1 using KNN method!

Sample is ID. as 1 using KNN method!
```

Summary

- Real world case has been tested
- ML (KNN) appears to have great potential
- Other types of real world example should be tested (those that have potential to benefit ADF)

Next Step

 Investigate ML techniques (such as Support Vector Machine, SVM) that can handle database in Terabytes.

