Reducing ASI risks: JSF case study on the benefits of integrated S&T engagement with the Program

presenter: Madeleine Burchill, DST Group
Marcus McDonald, Dave Conser, Oleg Levinski, Chris Loader, Khan Sharp, Alex Shekhter, Nik Rajic, Andrew Rider, Steve Harrison, DST Group
SQNLDR Jason Tagahode, JSF Div CASG
WGCDDR Ben Main, ASI DASA
Outline

- Stakeholders
- Timeline
- Engagement and S&T
- Hits (and misses)
- Lessons learnt
Stakeholders - (current) partners-in-ASI

- Aerospace Division
 - Air Combat Capability Program - **K Sharp, A Zehetner**
 - Aircraft Structures Branch - **M Burchill, M McDonald (JPO CPP), T Mills**
 - Airframe Technology and Safety Branch - **A Rider, A Shekhter**
 - Aircraft Health and Sustainment Branch – **N Rajic**
 - Aircraft Performance & Survivability Branch - **D Conser, O Levinski**

- Maritime Division - **C Loader, M Ibrahim**

- Joint & Operations Analysis Division - **S Harrison**

- DASA, ASI
 - **WGCDR B Main, SQNLDR R Walker, SQNLDR Gordo, A Jackson (Q-Q)**

- CASG, JSF Division
 - **SQNLDR J Tagahode, SQNLDR M Gordon (JPO CPP)**
Timeline

- AIR6000 air combat capability
- AU joins JSF SDD phase
- 24 Super Hornet buy decision
- F-111 retired
- CTOL fatigue test start
- AU01 AU02
- 1st refuel with KC30
- 1st flight
- 1st pilot

- LM win the JSF competition
- 1st pass approval
- 2nd pass approval
- 2 year deferral of 12 JSF
- 2009 DWP 100 JSF
- PH2A/B pass 58 JSF
- IOC 2020
- FOC 2023
- AUS & JAP regional support hub

CTOL - conventional take off and landing SDD - system design & devel. LM - Lockheed Martin
Strategy - to mitigate risks to RAAF JSF ASI

Engagement
- with Joint Program Office
 - Cooperative Partner Positions
 - technical meeting contributors
- with International partners
- with US services
 - USAF, USN
- with contractors
 - prime - OEM Lockheed Martin
 - subs - BAE Systems

S&T
- Ensure S&T to support the JSF
- Inform and support JSF Program
- Technical Risk Assessment
- S&T insertion JSTAB (then)
- S&T insertion Modernisation (now)
- Legacy experience
 - classic Hornet, F-111
 - testing, teardown, interpretation
 - service, environment
Just a few JSF ASI achievements
PASIWG

- CASG/DASA/DST Group instigated the partner ASI working group (PASIWG)
- Initial meeting chaired in AU in 2009, with reps in attendance from Denmark, Italy, the Netherlands, UK and USA
- Yearly PASIWG & Service Life Management (including Structural Prognostic Health Management SPHM) meetings held at Lockheed Martin, Ft Worth TX
- Bi-monthly PASIWG telecons run by Joint Program Office

POC - SQNLDR J Tagahode - JSF Division - CASG

note - DGTA, DMO & DSTG stood up first RAAF JSF ASIWG in 2006
Tracking buffet loads

- DST wind tunnel model to generate VT buffet data
- Gained support from partners and program to undertake the development of a direct strain-based buffet load monitoring methodology and incorporate into SPHM
- Transitioning DST developed algorithms for Multi-Variable Frequency Response Analysis (FRA)
- Enhances Individual Aircraft Tracking to improve Fleet Management for condition based maintenance
- POC - Dr O Levinski - Aircraft Performance and Survivability - DST Group

note - DST input also led to enhanced testing of buffet induced dynamic loads
Composite Repairs and JSTAB

- JSF Science and Technology Advisory Board (JSTAB) funded (2005-09) DST to consider how bonded repairs can be designed to meet strength requirements
- DST designed and substantiated a novel scarf-doubler repair concept
- Materials, adhesives and curing processes identified as well as new surface treatment methods to enable reliable vacuum cure of composites in the field
- Ongoing work includes how the combination of environment and mechanical loading affects the structural integrity of the composite structure

POC - Dr A Rider - Airframe Technology & Safety Branch - Aerospace Composite Technologies

Note - out of 280 JSTAB bids from partners, 21 were funded and 6 went to DST
Three Lifetimes of Type (3LOT) Testing

- Original fatigue test duration planned 2LOT of design loading
- Through PASIWG and partner engagement (i.e. USAF, USN) DST led the discussion on the benefits of a test extension to 3LOT, such as risk mitigation for usage variation
- 3LOT currently underway on CTOL variant test article AJ-1 (RAAF variant).

POC - WGCDCR Ben Main - DASA - ASI

note - all three variants HTs have already completed 3LOT testing
Marking cracks on the fatigue test

- Presented a case for the benefit of marker band (MB) load sequences as a fatigue test enhancement - to aid post test & teardown interpretation activities
- Accurate crack growth data from MB can be used to validate fatigue predictions
- DST developed, tested and delivered MB load sequences to aid post-test analyses on: all variants HT and CTOL AJ-1

POC - M Burchill - Aircraft Structures Branch - DST Group

note - JPO have instructed LM to develop MBs for USN JSF Carrier Variant test
Strain-life curves updated: surface treatment

- DST identified current design knockdowns did not account for fatigue reduction due to surface treatment.
- DST developed a rigorous program to perform a detailed evaluation of LM surface treatment design curves for main airframe alloys.
- DST comprehensive test contributions were used by LM to develop the final lifing curves.

POC - Dr A Shekhter - Aircraft Technology and Safety Branch - DST Group

Fatigue crack origins

Anodising conducted by LM-authorised manufacturer to F-35 specification.
Correlating fatigue hotspots in-situ

- Data from local strain gauges are used to correlate large scale stress analysis models
- Presented DST test enhancement methodology that enables direct wide area measurement of stress fields (c.f. gauges) during cyclic fatigue testing
- LM has adopted the system to aid correlation and investigate suspect hotspots

POC - Dr N Rajic - Aircraft Health and Sustainment Branch - DST Group

Note: TSA (Thermoelastic Stress Analysis) has also successfully applied to other full scale test articles – Hornet, Hawk & C-130

LM adopt TSA MiTE
On demand corrosion inspections

- JSF Corrosion Prognostic Health Management (CPHM) uses a BAE Sentinel Sensor
- DST developed a Prognostic Algorithm (PA) of atmospheric pitting corrosion that is based on electrochemical noise
- Further, DST is providing direct support to BAE Systems through incorporation of chromate free inhibitor into diffusion controlled primer depletion model
- The corrosion state predictions can be used to plan more effective and efficient corrosion inspections in difficult to access internal bays

POC - C Loader – Non Acoustic Signature Management Branch - DST Group
Non-destructive inspection enhancements

- Developed NDI reliability software to determine POD from inspection data (JSTAB)
- Production NDI: DST reliability analysis used to determine the effect of non-etching prior to liquid penetrant testing (LPT)
- Determination of 3-D damage characterisation in composites using ultrasonic inspection
- In-field composite repair qualification demonstrated
- Effects of inspection through thick composite layers analysed

POC - M Ibrahim – Acoustic Signature Management Branch - DST Group
Lessons Learnt

- early engagement is key - airframes are designed early
- learning from legacy - i.e. ASIWG V glossy brochures
- active collaboration: knowledge, data and resources
- needs commitment from leadership
- keep pushing: engineering time and money constraints
Questions
References

N.Rajic, D.McSwiggen, M.McDonald and D.Whiteley (2015) In Situ Thermoelastic Stress Analysis of the F-35 - An Improved Approach to Airframe Structural Model Validation. Aircraft Structural Integrity Program Conference, San Antonio, TX, USA

M.Christian (2014) Overview of the Full Scale Durability Tests on F-35 Lightning II Program, 2014 Aircraft Structural Integrity Program Conference, December San Antonio, TX USA
Backup videos

Joint Strike Fighter S&T Advisory Board (JSTAB)

- 280 proposals from partner nations in 2003
- 21 projects awarded (<1/13) and 7 awarded to AFRL
- 6 awarded to DST and received a level of funding
 - Advanced Airframe Repairs (AAR) - i.e. composite repair
 - Shape Optimisation for Structural Detail Design - i.e. fatigue hotspots
 - Improved Methods of Validation of Non-destructive Inspection Reliability
 - Non-Chromate Conversion Coatings for High Strength Aluminium Alloys
 - Cold Spray Metal Coatings for Corrosion Protection & Repair
 - Vibration-based Prognostics and Health Management (VPHM)